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Because of their high-energy metabolism, neurons are strictly dependent on mitochondria, which generate
cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components
of the oxidative phosphorylation pathway machinery, and therefore, mutations in mitochondrial DNA
(mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here,
we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to
illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations
can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological
mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial
integrity, and the prospects for therapy.
Introduction
Although all cells require ATP to maintain homeostasis, neurons

have special metabolic needs. To continually transmit electrical

signals, neurons must generate ATP for a number of energy-

consuming processes: control of membrane potential by the

Na+/K+ ATPase pump, regulation of intracellular Ca2+, and

exocytosis/recycling of synaptic vesicles. The latter process

has been shown to be a particularly high consumer of synaptic

ATP (Rangaraju et al., 2014). Synaptic ATP generation is stimu-

lated by electrical activity and is generated by both glycolysis

and mitochondrial function (Rangaraju et al., 2014). Fly mutants

with defects in transport of axonal mitochondria show synaptic

defects (Guo et al., 2005; Stowers et al., 2002; Verstreken

et al., 2005) due to depletion of ATP at the nerve terminal

(Guo et al., 2005). In humans, mitochondrial dysfunction is often

associated with pathology affecting the central and peripheral

nervous systems (Schon and Przedborski, 2011).

Mitochondria are the source of oxidative phosphorylation

(OXPHOS), a metabolic pathway that is critical for the efficient

extraction of energy from food sources (Scheffler, 2009). Unique

to all the biochemical processes within animal cells, the

OXPHOS pathway is under dual genetic control. Its components

are largely encoded by the nuclear genome, but a handful of

subunits are encoded by the small mitochondrial genome

(mtDNA), a semiautonomous, circular, and multicopy DNA

present within mitochondria (Figure 1). Although mitochondria

are best known for their role in OXPHOS, they also play addi-

tional metabolic roles through the citric acid cycle, the urea

cycle, and b-oxidation of fatty acids. Beyond metabolism,

mitochondria have important functions in iron-sulfur cluster

assembly, intracellular calcium handling, reactive oxygen spe-

cies (ROS) signaling, apoptosis, and innate immunity (Scheffler,

2009).

Although mtDNA gene products are directly required only in

OXPHOS, mitochondria with defective mtDNA have secondary
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defects beyond OXPHOS due to the diverse functions of mito-

chondria, which in turn can have wide-ranging effects in tissues

and have been implicated in the pathogenesis of many diseases.

This review focuses on the function of the mitochondrial genome

and how defects in this genome can lead to neurological dis-

ease. We first review the general principles of mitochondrial

genetics and discuss how mtDNA mutations affect mitochon-

drial function. This is followed by a description of the major

classes of mtDNA disease, which can originate from either

primary mtDNA mutations or mtDNA mutations secondary

to nuclear DNA defects. Finally, we discuss the pathogenic

mechanisms underlying mtDNA disease and the prospects for

therapy. Throughout, we emphasize the impact of defective

mtDNA on the central and peripheral nervous systems.

Mitochondrial Genetics
Organization of the mtDNA Genome

The mammalian mtDNA genome is 16.6 kb in length and en-

codes 13 polypeptides that are essential OXPHOS components

(Figure 1A) (Anderson et al., 1981). The OXPHOS system is

organized into five enzymatic complexes that reside in the mito-

chondrial inner membrane. These are the respiratory chain

components NADH-ubiquinone oxidoreductase (Complex I),

succinate-ubiquinone oxidoreductase (Complex II), ubiqui-

none-cytochrome c oxidoreductase (Complex III), cytochrome

c reductase (Complex IV), and the ATP synthase (Complex V).

The nuclear genome provides the majority of the OXPHOS com-

ponents, and Complex II is entirely encoded by the nuclear

genome. The other four complexes have one or more essential

subunits encoded by the mtDNA (Figure 1B).

To generate these 13 mtDNA gene products, the mitochon-

drial genome has an additional 24 genes that support a dedi-

cated translational system utilizing a slightly different genetic

code. Twenty-two transfer RNAs and two ribosomal RNAs

encoded by mtDNA are necessary for the function of the
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Figure 1. The Human mtDNA Genome and
OXPHOS
(A) Schematic of the circular mtDNA genome,
showing the 13 protein-coding genes (blue), the 2
rRNAs (green), and the 22 tRNAs (yellow). At the
top is the noncoding control region (white), which
contains the displacement loop (D-loop) involved
in mtDNA replication. This region is involved in
mtDNA replication and transcriptional initiation.
Classic examples of point mutations associated
with prototypical mitochondrial encephalomyo-
pathies are noted with asterisks. The ‘‘common
deletion’’ removes 4,977 bp of mtDNA and is one
of many deletions that have been associated with
sporadic KSS, PEO, and PS.
(B) OXPHOS and mtDNA gene products. The
five enzyme complexes constituting the OXPHOS
machinery reside in the mitochondrial inner mem-
brane and consist of components encodedbyboth
the nuclear and mitochondrial genomes. The 13
mtDNA proteins are transmembrane subunits of
the enzyme complexes I, III, IV, and V. They are
translated in the matrix of the mitochondrion and
inserted into the inner membrane via the oxidase
assembly (OXA) machinery. Mitochondrial ribo-
somes have polypeptides encoded by the nuclear
genome. These polypeptides assemble into large
and small ribosomal subunits that form complexes
with rRNAs encoded by the mtDNA. The assem-
bled ribosomes use mtDNA-encoded tRNAs to
decode the messenger RNA. Examples of dis-
eases caused by mutations in mtDNA-encoded
proteins, tRNAs, and rRNAs are indicated.
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mitochondrial ribosomes (Figure 1B). As a result, all 37 mtDNA

genes are essential for normal levels of OXPHOS activity. The

mtDNA genome in mammals is highly compact compared to

the organization of the nuclear genome. The only significant non-

coding segment is the control region that regulates transcription

and replication. As would be expected, mutations in mtDNA

frequently cause respiratory chain dysfunction.

Maternal Inheritance of the mtDNA Genome

Inherited diseases caused by mtDNA mutations are passed

through the maternal lineage (Schon et al., 2012). This feature

arises from the fact that almost all eukaryotes show uniparental

inheritance of mtDNA, and in the case of mammals, it is the

maternal mtDNA that is exclusively passed onto the offspring.

Exclusive maternal inheritance of mtDNA is facilitated by the

large size of the egg in comparison to the sperm. However, there

also appears to be active mechanisms to ensure removal of

paternal mtDNA. Paternal mitochondria in mammals are ubiqui-

tinated, and this mark has been suggested to target the organ-

elles for degradation upon fertilization (Sutovsky et al., 1999).

In nematodes, paternal mitochondria are removed by autophagy

(Al Rawi et al., 2011; Sato and Sato, 2011), a process involving

the trafficking of cellular material to the autophagosome and

then the lysosome for degradation. In fertilized mammalian
Neuron 84, De
eggs, some autophagymarkers are asso-

ciated with the paternal mitochondria

(Al Rawi et al., 2011). However, a recent

study has argued that autophagy is not

involved in degradation of paternal mito-

chondria in mice (Luo et al., 2013), and
more work is needed to understand how fertilized mammalian

embryos remove paternal mitochondria.

mtDNA Segregation during Maternal Transmission

Maternal transmission of mtDNA has two unusual features. First,

the mtDNA population undergoes a bottleneck phenomenon

during oogenesis, such that only a small population of mtDNA

molecules, estimated to be approximately 200, are amplified

and transmitted (Jenuth et al., 1996). This feature can lead to

rapid segregation of mtDNA variants within a few generations.

For example, a rare mtDNA haplotype in the mother can become

predominant in one of her offspring (Koehler et al., 1991). The

molecular mechanism of the bottleneck is poorly understood

and has been attributed to a numerical reduction in mtDNA

molecules in the developing oocyte (Cree et al., 2008) or to selec-

tive amplification of a small pool of mtDNAmolecules (Cao et al.,

2009; Wai et al., 2008). The latter mechanism is plausible

because mtDNA replication is not synchronized with the cell

cycle, allowing variation in the number of times a particular

mtDNA genome is replicated. Thus, a subpopulation of mtDNA

molecules may be expanded at the expense of others due to

selective replication or selective degradation.

The second unusual feature of maternal transmission is

the presence of a quality control mechanism, termed purifying
cember 17, 2014 ª2014 Elsevier Inc. 1127
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selection, which removes oocytes with a significant load of

severe mtDNA mutations. Mice carrying a severe frameshift

mutation in the ND6 mtDNA gene show progressive loss of the

mutation in each subsequent generation (Fan et al., 2008). Anal-

ysis of oocyte DNA indicates that oocytes contain lower levels

of the mutated mtDNA compared to the mother’s somatic

tissues. In contrast, a milder mtDNA mutation that had a less

severe effect on OXPHOS is retained through multiple genera-

tions. In another study, the presence of selection in the female

germline was detected through statistical analysis of inherited

mtDNA mutations (Stewart et al., 2008b). The mtDNA mutator

mice, engineered to express a proofreading-defective mtDNA

polymerase, contain high levels of mtDNA point mutations. Anal-

ysis of the maternal transmission of these mtDNA mutations

revealed bias in the position of the mutations in the offspring.

In the mtDNA protein-coding regions, synonymous mutations

were more common than nonsynonymous ones. In particular,

there was greater suppression of mutations in the first and

second codon positions, compared to the third position. Taken

together, these two studies strongly imply purifying selection

in the female germline as a mechanism to limit the inheritance

of pathogenic mutations (Stewart et al., 2008a). The molecular

basis of purifying selection is unclear, but it appears that this

mechanism can sense and eliminate oocytes with low levels of

mtDNA mutations that normally do not result in respiratory chain

defects, at least when such mtDNA mutations are studied in

experimental cell culture systems.

This phenomenon may explain why very severe mtDNA muta-

tions, such as those involving large deletions, are rarely inherited.

Less severe mutations, such as point mutations affecting the

tRNA genes, are commonly transmitted maternally. Such muta-

tions may escape purifying selection because they must accu-

mulate to very high levels before a respiratory chain defect is

apparent, although more work is required to understand this

effect.

Instability of the mtDNA Genome

Sequence data from human populations indicate that the mito-

chondrial genome accumulates inherited mutations at a rate

several orders of magnitude higher than that of nuclear DNA

(Pakendorf and Stoneking, 2005). The mitochondrial genome

also shows a several-hundred-fold increase in the spontaneous

mutation rate compared to the nuclear genome (Khrapko et al.,

1997). Many explanations have been proposed for this high

mutability: continuous mtDNA replication independent from the

cell cycle, high ROS exposure generated as a by-product of

the OXPHOS machinery, less efficient protection of mtDNA by

DNA packaging proteins, and the rather limited mtDNA repair

system.

Low levels of mtDNA heteroplasmy (the presence of more than

one mtDNA haplotype within a cell) can be detected by deep

sequencing in virtually any individual. A portion of these hetero-

plasmic variants can be found in the mother and therefore

appear to be maternally inherited. The rest are presumed to be

de novo mutations that accumulated in somatic tissues with

age (He et al., 2010; Payne et al., 2013). It has been estimated

that one in every 200 healthy newborn carries a common patho-

genic mtDNA mutation at a level below clinical manifestation

(Elliott et al., 2008). At a low frequency, such mutations, either
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inherited or de novo, will lead to disease if the mutation load rises

to a sufficiently high level. Epidemiological studies estimate the

prevalence of mtDNA disease as 1 in 5,000–10,000 (Chinnery

et al., 2000; Darin et al., 2001; Schaefer et al., 2008; Skladal

et al., 2003).

Effect of mtDNA Mutations

In inherited mtDNA diseases, affected offspring inherit a

maternal load of mtDNA mutations. Individuals with mtDNA dis-

ease are typically heteroplasmic and harbor both wild-type and

pathogenic mtDNA molecules. Cells can tolerate a high load of

mtDNA mutations before encountering bioenergetic failure.

The understanding of the pathological effects of mtDNA muta-

tions has been greatly facilitated by the development of cybrid

technology. In this approach, host cells lacking mtDNA serve

as the recipient of mitochondria from mutant cells (King and

Attardi, 1989), thereby allowing the pathological effects of

mtDNA variants to be studied in the context of a uniform nuclear

background. Cybrid cell models have been developed for

numerous mtDNA mutations associated with mitochondrial en-

cephalomyopathies (Chomyn et al., 1991; Hayashi et al., 1991).

Systematic analyses of cybrid clones containing varying levels

of mtDNA mutations indicate that OXPHOS failure does not

manifest until mtDNA mutations accumulate to greater than

60%–90% of total mtDNA (Chomyn et al., 1992; Rossignol

et al., 2003). Studies in mice also support this idea. In a mouse

model heteroplasmic for a 4 kb mtDNA deletion, which removed

multiple protein-encoding and tRNA genes, tissues did not show

COX deficiency until the pathogenic mtDNA level reached 85%

(Nakada et al., 2001). Cells therefore have a high threshold

for mtDNAmutations, with the threshold dependent on the exact

nature of the mutation. As a result, patients with mtDNA disease

have a mosaic distribution of respiratory chain deficiency. In

skeletal muscle, for example, histochemical analysis may reveal

a patchy distribution of OXPHOS-negative fibers intermingling

with functionally normal fibers (Figures 2A and 2B). These

features arise from the high-copy number of mtDNA, and the

need to accumulate mtDNA mutations to high levels before

cellular dysfunction is evident.

mtDNA diseases show a progressive, age-related clinical

course. In affected cells, the mutational load is generally quite

high and often homoplasmic. These observations have led to

the idea that inherited mtDNA mutations undergo random ge-

netic drift during cell division (mitotic segregation) such that

some cell lineages eventually acquire mutational loads that

surpass the threshold for bioenergetic failure (DiMauro and

Schon, 2003). Because of the variables of inherited mutational

load, mosaicism, and genetic drift, even the same mtDNA

mutation can lead to different clinical outcomes in affected

individuals. Postmitotic tissues such as skeletal muscle, cardiac

muscle, and brain and peripheral nerves are the most frequently

affected by mtDNA pathogenic mutations, due to their high

energy requirements (DiMauro et al., 2013).

Because mtDNA gene products are essential for the function

of OXPHOS components, mutations in mtDNA reduce energy

production, and this deficiency probably accounts for most of

the clinical phenotypes. In addition to this bioenergetic effect,

some mutations may also have secondary effects on apoptosis

or ROS production. Mice with extensive mtDNA mutations



Figure 3. Nuclearly Encoded Proteins Involved in Mendelian
Disorders of mtDNA Maintenance
(A) Molecules involved in mitochondrial fusion. Mitochondria are dynamic or-
ganelles that continually undergo fusion and fission. The balance of these
opposing actions controls mitochondrial morphology and enables mixing of
the mitochondrial population. Because mitochondria have two membranes,
mitochondrial fusion is a multistep process. Outer membrane (OM) fusion
requires the Mitofusins 1 and 2 (green), transmembrane GTP hydrolyzing
enzymes. After outer membrane fusion, inner membrane (IM) fusion requires
Opa1 (brown ovals), another large GTPase that is localized to the inner
membrane. Mitofusins and Opa1 belong to the dynamin superfamily of
GTPases. Mutations in Opa1 and Mfn2 can lead to mtDNA deletions.
(B) Nuclearly encoded genes important for mtDNA replication and mainte-
nance. The mitochondrial genome (represented by the closed loop) is repli-
cated by the Polg DNA polymerase, a heterotrimeric enzyme complex
composed of the catalytic subunit (POLG1) and two accessory subunits
(POLG2). Twinkle (C10orf2/PEO1) is a mitochondrial DNA helicase that is
thought to unwindmtDNA during at the replication fork (Milenkovic et al., 2013;
Tyynismaa et al., 2004). Mitochondrial genome maintenance exonuclease 1
(Mgme1) cleaves single-stranded DNA and is essential for mtDNA mainte-
nance. The adenine nucleotide translocase (ANT) in the inner membrane (IM)
exchanges ATP for ADP. Several additional proteins, listed at the bottom, are
important for regulating dNTP pools or levels in the mitochondria and are
important for mtDNA maintenance (see Table 1). TK2, DGUOK, SUCLA1, and
SUCLG1 are mitochondrial proteins; RRM2B is nuclear and TP is cytosolic.

Figure 2. Muscle Fiber Defects and mtDNA Deletions Associated
with a Polg Mutation
(A) COX and COX/SDH stains are used to clinically evaluate mitochondrial
dysfunction in muscle. COX staining of a transverse muscle section reveals a
mosaic pattern, with some fibers showing full enzymatic reaction (+), partial
reaction (+/�), and no reaction (�).
(B) The double COX/SDH staining of an adjacent section shows that the COX-
positive fibers (+) display a brownish color, slightly darker compared to COX
alone. In contrast, the COX-negative fibers (�) are intensely stained by SDH
(blue) with frequent subsarcolemmal enhancement, and the COX-partial fibers
(+/�) are intermediate, with preponderant SDH blue color.
(C) Long-range PCR reveals a single band for wild-type mtDNA in the control
subject and multiple smaller bands denoting multiple mtDNA deletions in the
patient. Both the histological sections and the mtDNA analysis are from a
patient with compound heterozygous Polg mutations and SANDO phenotype.
Images are courtesy of Dr. Maria Lucia Valentino.
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(Kujoth et al., 2005) or mtDNA depletion (Wang et al., 2001)

show widespread apoptosis, and cell death in the nervous

system has been reported in various human mtDNA disorders

(Leigh, 1951).

Mitochondrial Dynamics

In considering the function of mtDNA and the effects of mtDNA

mutations, it is important to note that the mitochondria within a

cell are dynamic and continually engage in fusion and fission

(division) (Chan, 2012). In mitochondrial fusion, two mitochon-

dria merge into a single, larger organelle. Because mitochon-

dria have double membranes, fusion involves the sequential

fusion of the outer and inner membranes, and separate ma-

chinery have been identified for these processes (Figure 3A).

Outer membrane fusion requires mitofusin GTPases (Mfn1

and Mfn2) located in the mitochondrial outer membrane. Inner

membrane fusion requires the Opa1 GTPase associated with

the mitochondria inner membrane. Mitochondrial fusion is

balanced by the opposing process of mitochondrial fission,

which requires yet another GTPase, dynamin-related protein

1 (Drp1). These dynamic processes are essential for proper

mitochondrial function and serve to homogenize the mitochon-

drial population.
Mitochondrial Diseases

Multiple Genetic Origins of Mitochondrial Disease: Maternally

Inherited, Sporadic, or Mendelian. Mitochondrial encephalo-

myopathies are a group of diseases due to a defect in mitochon-

drial function, and they often have central and peripheral nervous

system involvement (Schon et al., 2012; Shapira et al., 1977).

Many prototypical mitochondrial encephalomyopathies are due

to mutations in mtDNA: Kearn-Saryre-Syndrome (KSS) (Kearns

and Sayre, 1958); mitochondrial encephalomyopathy, lactic

acidosis, and stroke-like syndrome (MELAS) (Pavlakis et al.,

1984); myoclonic epilepsy with ragged red fibers (MERRF) (Fu-

kuhara et al., 1980); and Leber’s hereditary optic neuropathy

(LHON) (Leber, 1871). KSS is sporadic, and the latter three dis-

eases are maternally inherited. In 1988, there were breakthrough

descriptions of the molecular defects responsible for some of

these clinical entities. Single mtDNA macrodeletions were

associated with mitochondrial myopathies (Holt et al., 1988)

and with KSS (Zeviani et al., 1988). In contrast, an mtDNA point

mutation in the complex I subunit ND4 was associated with
Neuron 84, December 17, 2014 ª2014 Elsevier Inc. 1129



Table 1. The Major Classes of Mitochondrial Disease, Illustrated with Prototypical Examples

Disease Gene Mutation Neuromuscular Features

Maternally inherited mtDNA mutations

LHON ND4, ND1, ND6 Optic atrophy

MELAS tRNALeu and other tRNAs

and ND subunits

Muscle weakness, including eye muscles and exercise intolerance,

cardiomyopathy, hearing loss, headaches, epilepsy, stroke-like episodes,

brain atrophy, and cognitive deterioration

MERRF tRNALys and other tRNAs Muscle weakness, including eye muscles and exercise intolerance,

myoclonic jerks, epilepsy, cerebellar atrophy and ataxia, and hearing loss

Nonsyndromic deafness 12S rRNA and tRNAs Hearing loss

NARP/MILS ATPase 6 Retinitis pigmentosa, sensory neuropathy, ataxia, seizures, hearing loss,

mental retardation and cognitive deterioration, and bilateral necrotizing

lesion of basal ganglia with spastic dystonia

Sporadic mtDNA deletions

CPEO mtDNA deletion Weakness of eye muscles

KSS mtDNA deletion Weakness of eye muscles, pigmentary retinopathy, cerebellar atrophy

and ataxia, and cardiac conduction abnormalities

PS mtDNA deletion Pancitopenia

Mendelian disorders affecting mtDNA stability (multiple deletions) and maintenance (depletion)

Polg-associated phenotypes POLG1 See Table 2

Autosomal dominant

and recessive PEO

POLG1, POLG2, ANT1, Twinkle,

MPV17, TK2, DGUOK, RRM2B,

DNA2, MGME1

Weakness of eye muscles variably associated with hearing loss,

peripheral neuropathy, Parkinsonism, and psychiatric disturbances

MINGIE thymidine phosphorylase Weakness of eye muscles, peripheral neuropathy, hearing loss,

and gastrointestinal dysmotility

DOA ‘‘plus’’ Opa1, Mfn2 Optic atrophy, hearing loss, peripheral neuropathy,

and weakness of eye muscles
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LHON (Wallace et al., 1988). These findings established that

mtDNA mutations cause both maternally inherited and sporadic

mitochondrial disease. In the last 25 years, the field of mitochon-

drial medicine (Luft, 1994) has grown exponentially, and a

plethora of mtDNA mutations have been identified for a large

range of clinical phenotypes (Ruiz-Pesini et al., 2007; Schon

et al., 2012). A catalog of human mtDNA mutations can be found

at http://mitomap.org/MITOMAP.

In addition, it soon became clear that other mtDNA diseases

are transmitted as Mendelian traits, indicating that nuclear ge-

netic defects can drive mtDNA mutagenesis and pathologic

maintenance. These disorders are characterized by the accu-

mulation of multiple mtDNA deletions (Zeviani et al., 1989) or

the severe reduction of mtDNA copy number (Moraes et al.,

1991).

We consider the major classes of mtDNA disorders, focusing

on prototypic phenotypes that illustrate their effects on the

central and peripheral nervous systems (Table 1).

Maternal Inherited Diseases

Maternally InheritedmtDNA Point Mutations in Respiratory Chain

Subunits: LHON and NARP/MILS. As the first maternally in-

herited disease to be associated with an mtDNA point mutation,

LHON was initially associated with the m.11778/G > A mutation

affecting the ND4 subunit of complex I (Wallace et al., 1988).

Since then, 14 mutations have been confirmed as pathogenic

for this disorder in the Mitomap website (Achilli et al., 2012;

Ruiz-Pesini et al., 2007), and many others, all affecting ND sub-
1130 Neuron 84, December 17, 2014 ª2014 Elsevier Inc.
units of complex I, have been associated with LHON compli-

cated by phenotypes overlapping with MELAS and Leigh

syndromes (discussed later) (Carelli et al., 2009).

Clinically, LHON is a monosymptomatic blinding disease

with extreme neuronal selectivity—the only neuron undergoing

degeneration is the retinal ganglion cell (RGC) (Carelli et al.,

2004; Yu-Wai-Man et al., 2011). The affected individuals experi-

ence subacute/acute loss of central vision at a young/adult age

(Figures 4A–4G), which evolves in about 1 year to a stable

chronic condition characterized by profound visual impairment

(Carelli et al., 2004; Yu-Wai-Man et al., 2011). Further peculiar-

ities include male prevalence and incomplete penetrance,

notwithstanding that the mtDNA pathogenic mutation is homo-

plasmic along the maternal line in almost all LHON families.

Unaffected carriers may remain asymptomatic lifelong, although

many actually demonstrate subtle abnormalities at ophthalmo-

logical examination.

A large body of biochemical and cell biology investigations,

often involving cybrid cell models, demonstrate that the LHON

mutations in complex I subunits cause chronically increased

ROS production due to impaired ATP synthesis. As a result, cells

harboring the mutation are prone to undergo apoptotic death

(Carelli et al., 2004; Yu-Wai-Man et al., 2011). Recent break-

throughs provide evidence that estrogens may mitigate the

cellular pathologies by upregulating mitochondrial biogenesis,

thus suggesting a possible explanation for the disease preva-

lence in males (Giordano et al., 2011). Furthermore, a variable

http://mitomap.org/MITOMAP


Figure 4. Neurological Features in LHON
(A and B) Fundus images of the right eye (OD) and left eye (OS) of an LHON
patient are shown in (A) and (B), respectively. In (A), temporal pallor (pale yellow
region, asterisk) of the optic disc (bright circle near the center) indicates initial
atrophy of the nerve. This defect is accompanied by the complete loss of fibers
of the papillomacular bundle (loss of the translucent stripes in the dark area
delimited by the arrows). The remaining quadrants—superior (SUP), inferior
(INF), and nasal (NAS)—are characterized by pseudoedema of the retinal
fibers, visible as translucent stripes converging to the optic disc, blurring its
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level of compensatory mitochondrial biogenesis occurs in LHON

carriers. This increased biogenesis may account for the incom-

plete penetrance in both genders and may be modulated by

a combination of genetic and environmental modifying factors

(Giordano et al., 2014). In fact, tobacco smoking appears to

be a major environmental trigger favoring visual loss in LHON

(Kirkman et al., 2009).

The pattern of RGC degeneration in LHON likely relates to

their unique biology. The natural history of LHON, as defined

by longitudinal studies with optical coherence tomography

(OCT) (Barboni et al., 2010), as well as by postmortem investiga-

tions on retinal and optic nerve specimens (Pan et al., 2012), is

characterized by progression of a neurodegenerative front along

a gradient determined by the axonal diameter (Figures 4H–4K).

The small axons on the temporal quadrant of the optic nerve,

belonging to the papillomacular bundle deputed to central vision,

are the earliest target. The disease progressively involves larger

axons but usually spares the largest axons on the nasal quadrant

(Barboni et al., 2010; Pan et al., 2012). Mathematical modeling

of the degenerative pattern suggests large axons have a more

favorable surface/volume ratio that allows a higher capacity

to increase mitochondrial mass that can alleviate reduced

OXPHOS (Pan et al., 2012). The available evidence from human

studies therefore suggests that axonal pathology precedes

loss of axons and soma, although this conclusion is limited

by the small number of documented postmortem studies.

In a recent mouse model of LHON, pathological changes in
margins. In (B), the eye is at a preclinical stage, characterized by the still intact
papillomacular bundle (presence of the translucent stripes in the area de-
limited by the arrows) and pseudoedematous appearance of the retinal fibers
in all quadrants. The optic disc is hyperemic (congested due to engorgement
with blood, asterisk), and retinal vessels are tortuous and frequently blurred by
the pseudoedematous nerve fibers. Images courtesy of Dr. Piero Barboni.
(C–E) In (C)–(E), OCT is used to measure the thickness of the retinal nerve fiber
layer (RNFL) for OD (C) and OS (E) of the same patient. In (D), the green area
denotes the normal range of retinal fiber layer thickness, whereas the red re-
gion indicates a pathological reduction of thickness (atrophy). The OD scan is
indicated by the continuous line, which presents a pathological reduction only
in the temporal sector (red sector on the circular graph). This is visualized by
the pink area of atrophy in (C). OS is indicated by the dotted line and displays
an overall increased thickness, being over the green range in all sectors, which
denotes preclinical swelling of the retinal fibers due to pseudoedema. This is
reflected in a still normal pattern in (E). Images courtesy of Dr. Piero Barboni.
(F and G) Computerized Humphrey visual fields for OD andOS, respectively. In
(F), a central scotoma (dark region) is evident. This defect correlates with the
loss of retinal fibers of the papillomacular bundle at fundus observation (A) and
detected by OCT measurements (C and D). In (G) the visual field is still unaf-
fected. This is consistent with the preclinical stage of this eye, which has intact
papillomacular bundle fibers visible at fundus observation (B) and detected by
OCT measurements ([D] and [E]). Images courtesy of Dr. Piero Barboni.
(H and I) Light microscopy appearance of optic nerve cross-sections from
control (H) and LHON (I) individuals. In (H), the normal optic nerve is densely
packed, with about 1.2 million axons organized in bundles. In (I), there is
complete loss of axons (asterisk) in the temporal quadrant (TEMP) corre-
sponding to the papillomacular bundle, and profound depletion of fibers also in
the superior (SUP), inferior (INF) and nasal (NAS) sectors with a clear transition
zone indicated by the arrows. Images courtesy of Dr. Alfredo A. Sadun and
Fred Ross-Cisneros.
(J and K) Electron microscopy of optic nerve cross-sections from control (J)
and LHON (K) individuals. In (J), there is a normal density of axons, with
prevalent small caliber ones. In (K), there is profound depletion of axons, in
particular the smaller caliber population. The spared axons frequently show
a thinner ring of myelin. Images courtesy of Dr. Alfredo A. Sadun and Fred
Ross-Cisneros.
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Figure 5. Brain Magnetic Resonance
Images (MRI) of Mitochondrial
Encephalomyopathies
(A andB) Two axial brain T1-weighted images from
the same patient with Leigh’s syndrome due to
complex I deficiency are shown in (A) and (B). In
(A), bilateral necrotizing striatal lesions (arrows)
and widespread leukoencephalopathy are visible.
In (B), the leukoencephalopathy presents with
cavitations in the frontal white matter (arrows).
(C and D) Brain images from two MELAS patients
are shown in (C) and (D). Axial T2-weighted image
(C) shows a large hyperintense area extending
in the occipital and parietal lobes of the left hemi-
sphere (right side of image, arrow), the classical
posterior location for stroke-like lesions in a pa-
tient with the most frequent MELAS m.3243A > G/
tRNALeu(UUR) mutation. In another MELAS patient
(D), with a complex I mtDNA mutation, multiple
and bilaterally distributed cortical signal changes
with cavitations (arrows) are evident on a coronal
fluid-attenuated inversion recovery (FLAIR) image.
These MELAS lesions do not obey the distribution
of a major arterial vascular territory. In fact, they
are not due to a true ischemic infarct of cerebral
tissue but to tissue edema and may be transient
and partially reversible.
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axons—including swelling, accumulation of abnormal mitochon-

dria, and demyelination—are also observed well before axonal

loss (Lin et al., 2012).

The special sensitivity of RGCs toOXPHOSdefects also arises

from the structural organization of myelin in this axonal system.

The proximal portion of the RGC axon is devoid of myelin, and

therefore this region of the neuron is particularly energy depen-

dent and sensitive to mitochondrial dysfunction. The axons

become myelinated only after passing the anatomical structure

known as the lamina cribrosa. Thereafter, axon potentials can

propagate via the more energy efficient mode of saltatory con-

duction.

Another mutation, m.8993T > G or C in the ATPase 6 subunit

gene, is associated with a maternally inherited syndrome char-

acterized by peripheral neuropathy, ataxia, and pigmentary reti-

nopathy (NARP), but when the mutant load exceeds 90%–95%,

the patient’s clinical phenotype switches to maternally inherited

Leigh’s syndrome (MILS), a severe subacute necrotizing en-

cephalopathy that leads to bilateral lesions in basal ganglia

and brainstem (Figures 5A and 5B) (Holt et al., 1988; Tatuch

et al., 1992; de Vries et al., 1993). Leigh’s disease can be caused

by either mtDNA mutations or nuclear mutations and is a com-
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mon clinical outcome of any severe

OXPHOS dysfunction, particularly com-

plex I or IV deficiency (DiMauro et al.,

2013).

Maternally Inherited mtDNA Point Muta-

tions in tRNA and rRNA Genes: MELAS,

MERRF, and Aminoglycoside-Induced

Deafness. Disruption of the mitochon-

drial protein translation machinery en-

coded by mtDNA causes a diverse set

of diseases that features neurological

symptoms. The MELAS and MERRFmul-
tisystemic syndromes are the most representative and studied

examples of maternally inherited encephalomyopathies due to

heteroplasmic point mutations of tRNA genes in the mtDNA.

Most frequently, they are associated with the m.3243A > G/

tRNALeu(UUR) mutation for MELAS (Goto et al., 1990) and the

m.8344A > G/tRNALys mutation for MERRF (Shoffner et al.,

1990). Additional point mutations have been associated with

both MELAS and MERRF, affecting different positions in the

tRNALeu(UUR) and tRNALys hotspot genes, as well as in other

tRNAs (Ruiz-Pesini et al., 2007). It could be expected that all

these mutations should produce similar pathogenic outcomes

due to the impaired translation of mtDNA-encoded proteins. In

practice, the clinical phenotypes of MELAS versus MERRF are

strikingly distinct. Furthermore, the proband’s maternal lineage

can show an extraordinary variety of other frequently overlap-

ping phenotypes, ranging from milder and incomplete forms of

the syndromes to the most severe Leigh’s syndrome (Chae

et al., 2004; Howell et al., 1996; Mancuso et al., 2014; Mancuso

et al., 2013; Moraes et al., 1993; Silvestri et al., 1993). A major

reason for such clinical variability has been ascribed to variable

heteroplasmic loads of the mutant mtDNA within and among

tissues (Chinnery et al., 1997). However, the reason for the
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inherent difference in the clinical presentation between the

m.8344A > G/tRNALys and m.3243A > G/tRNALeu mutations re-

mains unclear, and therefore the heterogeneous presentation

of mtDNA mutations remains a mysterious aspect of mitochon-

drial disease.

Both MELAS and MERRF are characterized by severe neuro-

logical symptoms. A peculiar clinical hallmark of MELAS is the

repeated occurrence of stroke-like episodes (Betts et al., 2006;

Iizuka et al., 2007) that result in brain damage (Figures 5C and

5D). The episodes appear to be due to pathology of small blood

vessels. Due to respiratory chain dysfunction and low plasma

levels of citrulline and L-arginine, there is decreased capacity

for nitric-oxide-dependent vasodilation (El-Hattab et al., 2014;

Koga et al., 2012). The inability to physiologically match cerebral

blood supply to metabolic needs may lead to episodes of meta-

bolic failure in large sections of the brain tissue. Such episodes

may be triggered and worsened by stressful conditions such

as neuronal hyperexcitability during epileptic discharges or the

‘‘spreading depression’’ of migrainous attacks. Thus, migraine

is a frequent prodromal feature in MELAS for stroke-like epi-

sodes, which may affect brain regions corresponding to the

migraine area (Betts et al., 2006; El-Hattab et al., 2014; Iizuka

et al., 2007; Koga et al., 2012). In contrast, the MERRF mutation

has a predilection for myoclonus and cerebellar dysfunction

(Mancuso et al., 2013). In both disorders, muscle weakness

and neurological defects are prevalent as the disease pro-

gresses with age.

TheMELASmutation has been thoroughly studied for over two

decades,mainly in vitro by exploiting cybrid cell models. Multiple

pathogenic mechanisms have been proposed for the tRNA

mutation, including impairment of mitochondrial transcription

termination (Hess et al., 1991), increased steady-state levels of

the aberrant transcript RNA (Kaufmann et al., 1996), defective

aminoacylation of the tRNA (Chomyn et al., 2000), and defective

modification of the wobble base (Yasukawa et al., 2000). Some

of these mechanisms have also been proposed for the MERRF

mutation, such as defective aminoacylation (Enriquez et al.,

1995) and wobble modification (Yasukawa et al., 2001). Overall,

bothMELAS andMERRFmutations lead to a global defect of the

respiratory chain in patient-derived tissues as well as in cultured

cells (King et al., 1992; Masucci et al., 1995). Neurons differenti-

ated fromMELAS patient-derived induced pluripotent stem cells

have a prevalent complex I defect (Hämäläinen et al., 2013). This

last result fits with the observation that many mtDNA point muta-

tions affecting complex I cause phenotypes overlapping those of

MELAS (Carelli et al., 2009; Ruiz-Pesini et al., 2007).

Point mutations in the rRNA subunits can also cause depres-

sion of mitochondrial protein translation. This is the case for

the point mutation m.1555/A > G, which affects the 12S rRNA

gene. This mutation induces nonsyndromic sensorineural deaf-

ness and causes sensitivity to aminoglycoside-related ototox-

icity (Prezant et al., 1993). This latter feature is related to the

ancestral bacterial origin of ‘‘endosymbiotic’’ mitochondria,

which can be rendered more susceptible to antibacterial drugs

by mtDNA polymorphisms or mutations (Pacheu-Grau et al.,

2010). The m.1555/A > Gmutation is usually homoplasmic along

the maternal line, and its penetrance is very variable among the

mutation carriers (Prezant et al., 1993). Cybrid studies demon-
strate the important modifying effect of the nuclear background

(Guan et al., 2001). Nuclear genetic modifiers seem to regulate

the clinical severity of the rRNA mutation (Guan et al., 2006; Rai-

mundo et al., 2012) and the susceptibility to aminoglycosides.

Sporadic Diseases

Sporadic Single Large-Scale Deletions: KSS, Chronic Progres-

sive External Ophthalmoplegia, and Pearson Syndrome. Single

mtDNA macrodeletions, removing one or more mtDNA genes,

underlie a number of mitochondrial diseases (Holt et al., 1988;

Zeviani et al., 1988). In most cases they are sporadic and not

transmitted, probably because the mutations arise de novo in

the somatic lineage during early embryogenesis. Chronic pro-

gressive external ophthalmoplegia (CPEO) is characterized by

inability to move the eyes and eyebrows, a sign of muscle weak-

ness. KSS is a complex multisystem disorder characterized by

the invariant triad of CPEO, pigmentary retinopathy, and onset

before 20 years of age (Kearns and Sayre, 1958). Frequent addi-

tional symptoms include poor growth, progressive cerebellar

syndrome, heart block, and increased protein content (above

100 mg/dl) in the cerebrospinal fluid. RRF and COX-negative fi-

bers are the morphological hallmarks of muscle in both isolated

CPEO with mitochondrial myopathy and in KSS. Pearson Syn-

drome (PS) is a condition of early infancy characterized mainly

by sideroblastic anemia or pancytopenia. In some cases, individ-

uals who survive into childhood later develop KSS or even Leigh

syndrome (Larsson et al., 1990; Santorelli et al., 1996).

Single mtDNA deletions in most cases are flanked by direct

repeats, whose molecular rearrangement causes the formation

of deletions (Samuels et al., 2004; Schon et al., 1989; Shoffner

et al., 1989). Clonal expansion of the deleted species may be

favored by their shorter replication time (Fukui and Moraes,

2009; Krishnan et al., 2008). However, deletions without repeats

at the deletion boundaries also exist (Damas et al., 2014a,

2014b). Single mtDNA deletions may coexist with mtDNA dupli-

cations (Poulton et al., 1989), and which rearranged mtDNA is

pathogenic has been questioned (Manfredi et al., 1997). Further-

more, mtDNA single deletions can occasionally be maternally in-

herited (Ballinger et al., 1992; Shanske et al., 2002). It has been

suggested that the duplicated mtDNA is the molecular mtDNA

species passing through the germline and that the duplicated

form regenerates single deletions in somatic tissues of the

newborn (Ballinger et al., 1994).More recently, it has been shown

that double strand breaks favor the occurrence of mtDNA dele-

tions through a recombinogenicmechanism (Srivastava andMo-

raes, 2005). These results suggest that DNA repair and not

replication generates the mtDNA deletions. The age of onset

and progression of disease burden are correlated with the size

of the deletion, the deletion heteroplasmy level in skeletal mus-

cle, and the location of the deletion within the genome (Grady

et al., 2014). These correlations may provide some predictive

tools for prognosis.

Mendelian Diseases

Multiple Deletions and Depletion of mtDNA in Mendelian Disor-

ders of mtDNA Maintenance. Shortly after the first mtDNA

mutations were identified in 1988, an autosomal dominant disor-

der characterized by CPEO and myopathy was associated with

multiplemtDNA deletions (Figure 2C) (Zeviani et al., 1989). A sec-

ond group of recessive syndromes, characterized by infantile
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mitochondrial myopathy or hepatopathy or kidney failure, was

associated with mtDNA depletion in the affected tissues (Moraes

et al., 1991). This combination of Mendelian inheritance and

mtDNA defects suggested that nuclear mutations can cause

mtDNA instability syndromes. Furthermore, mtDNA point muta-

tions, multiple deletions and depletion were found in postmitotic

tissues in a complex, multisystem syndrome combining muscle,

brain, and gastrointestinal symptoms (mitochondrial neuro-gas-

tro-intestinal encephalomyopathy, or MNGIE) (Nishigaki et al.,

2003; Nishino et al., 2000). In this latter disorder, a nuclear defect

caused both mtDNA mutations and defective maintenance.

Over the last decade, many different nuclear mutations have

been shown to cause mtDNA multiple deletions and/or deple-

tion, along with a wide range of neuromuscular symptoms (see

Table 1). These findings indicate that a large set of nuclear

genes are involved in maintaining mtDNA integrity. Most of the

diseases involve proteins directly implicated in mtDNA repli-

cation (Figure 3B) (POLG1 and POLG2 [components of Polg],

Twinkle, DNA2, and MGME1) or in maintaining the balanced

supply of nucleotides (dNTP) necessary for mtDNA synthesis

(TP, TK2, DGUOK, RRM2B, SUCLA2, and SUCLG1) (Copeland,

2012; DiMauro et al., 2013; Spinazzola and Zeviani, 2005). In

addition, mutations in OPA1 and MFN2, core components of

the mitochondrial fusion machinery (Figure 3A), can also cause

accumulation of mtDNA deletions in postmitotic tissues (Chan,

2012; Renaldo et al., 2012; Rouzier et al., 2012; Yu-Wai-Man

et al., 2010).

The copy number and stability of mtDNA play crucial roles for

neuronal survival and brain metabolism. Mice with mutations in

TFAM (Larsson et al., 1998; Wang et al., 1999; Wredenberg

et al., 2002) or Polg (Larsson et al., 1998; Trifunovic et al.,

2004; Wang et al., 1999; Wredenberg et al., 2002) have mtDNA

depletion or accumulation of mtDNA mutations. These mouse

models show features not only of mitochondrial diseases but

also of aging (Trifunovic et al., 2004) and age-related neurode-

generative disorders such as Parkinson disease (Ekstrand

et al., 2007).

A complete description of the phenotype associated with this

still-growing list of genetic defects is beyond the scope of the

present review. Instead, we focus on the most striking exam-

ples—the mitodynamics pathologies associated with OPA1

and MFN2 mutations and the many syndromes associated

with Polg mutations.

Disorders of Mitochondrial Dynamics Affect mtDNA Mainte-

nance: OPA1 and MFN2. The population of mitochondria

within a cell undergoes cycles of fusion and fission events that

promote mixing of mitochondria and control their shape and

function (Chan, 2012). The biomedical relevance of these dy-

namic processes was highlighted by the observation that

mutations in OPA1 and MFN2 can be deleterious for mtDNA

maintenance, leading to mtDNA instability and depletion syn-

dromes (Amati-Bonneau et al., 2008; Hudson et al., 2008; Rouz-

ier et al., 2012). Similar towhat is observed for the Polgmutations

(see next section), there has been an expanding spectrum of

phenotypes associated with different mutations in the OPA1

gene. These phenotypes may range from classical dominant

optic atrophy (DOA), to the association of optic atrophy and

sensorineural deafness, to a more complex and multisystemic
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phenotype recognized as DOA plus (Yu-Wai-Man et al., 2010).

The latter is frequently due to missense mutations affecting the

GTPase domain of Opa1 and often manifests with CPEO. Its

hallmark is the accumulation of mtDNA multiple deletions in

postmitotic tissues, particularly in skeletal muscle. Central and

peripheral nervous systems are also affected.

Mutations in theMFN2 gene were identified in Charcot-Marie-

Tooth type 2A, a peripheral sensorimotor neuropathy (Züchner

et al., 2004). As with OPA1, some mutations are now being

associated with unusual and more severe phenotypes, including

association with optic atrophy, or mtDNA instability or depletion

(Boaretto et al., 2010; Renaldo et al., 2012; Rouzier et al., 2012).

Studies in mice indicate that mitochondrial fusion is important

for organization of mtDNA into nucleoids (Chen et al., 2007)

and for maintaining mtDNA levels (Chen et al., 2010).

Polg Syndromes: From mtDNA Multiple Deletions to Depletion.

Mutations in DNA polymerase gamma (Polg), the master enzyme

for mtDNA replication, cause a remarkably wide range of

mitochondrial diseases with defective mtDNA maintenance.

Polg mutations were found in dominant and subsequently

recessive syndromes characterized by late-onset CPEO and

mitochondrialmyopathywithmtDNAmultiple deletions (Figure 2)

(Lamantea et al., 2002; Van Goethem et al., 2001). A more severe

syndrome termed sensory-ataxia neuropathy with dysarthria

and ophthalmoplegia (SANDO) is almost invariably associated

with compound heterozygote Polg mutations (Van Goethem

et al., 2003). In addition to these adult-onset mitochondrial

diseases, Polg mutations can also lead to severe childhood

neurologic disorders, such as Alpers-Huttenlocher hepatopathic

poliodystrophy (Naviaux and Nguyen, 2004).

Polg mutations cause an extraordinary spectrum of clinical

phenotypes (Table 2), in part because they cause a wide range

of molecular lesions in mtDNA. These defects include mtDNA

base substitutions, deletions (Figure 2C) and/or depletion, ulti-

mately resulting in dysfunctional OXPHOS complexes and/or

their depletion. Recently, there has been an effort to map

pathogenic mutations in Polg to functional clusters, to establish

genotype-phenotype relationships (Farnum et al., 2014).

The functional separation of the proofreading from the poly-

merase activity in Polg has been exploited to generate anmtDNA

‘‘mutator’’ mouse model, where proofreading is defective, but

replicative capacity is intact (Trifunovic et al., 2004). This mutator

mouse model displayed reduced lifespan and premature onset

of aging-related phenotypes, including weight loss, reduced

fat, alopecia, kyphosis, osteoporosis, anemia, reduced fertility,

and heart failure. This model has been interpreted as a strong

indication of a causative link between mtDNA mutations, which

are well documented to accumulate somatically with age in

humans (Cortopassi et al., 1992; Soong et al., 1992), and aging.

More recently, this mousemodel has been revisited as a ‘‘proge-

roid’’ phenotype with precocious somatic stem cell dysfunction

(Ahlqvist et al., 2012). The significance of the somatic accumula-

tion of mtDNA mutations in human aging remains a hot topic of

investigation and discussion (Bratic and Larsson, 2013).

Aging-Related Somatic Accumulation of mtDNA Mutations: The

Case of Parkinson’s Disease. mtDNA is continuously replicated

independently from the cell cycle (Birky, 1994). Given the high

mutability of mtDNA, a lifetime of mtDNA replication can result



Table 2. Diversity of Clinical Syndromes Caused by Polg Mutations

Syndrome Neuromuscular and Systemic Features

Alpers-Huttenlocher syndrome (AHS) The most severe phenotype characterized by childhood-onset, progressive,

and severe encephalopathy with intractable epilepsy and hepatic failure

Childhood myocerebrohepatopathy

spectrum (MCHS)

Presents in early infancy (up to 3 years) with developmental delay, lactic acidosis,

and myopathy with failure to thrive; variably associated with liver failure,

renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss

Myoclonic epilepsy myopathy sensory

ataxia (MEMSA)

Spectrum of disorders with epilepsy, myopathy, and ataxia without

ophthalmoplegia

Ataxia neuropathy spectrum (ANS) Recessive ataxia, neuropathy, dysphagia, seizures, and ophthalmoplegia

Late-onset autosomal dominant

CPEO and myopathy

Sensorineural hearing loss, axonal neuropathy, ataxia, depression,

Parkinsonism, hypogonadism, and cataracts
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in the somatic accumulation of age-related mutations. These

mutations include both point mutations and deletions, similar

to those observed in mtDNA instability syndromes (Bratic and

Larsson, 2013). Certain networks of neuronal cells in the brain,

such as the dopaminergic system, seem prone to suffer an

enhanced accumulation of these somatic mtDNA mutations.

The accumulation in single cells presumably results from clonal

expansion of pathogenic mtDNA mutations. In neurons with a

high mutational load, one can imagine a cascade of additional

pathogenic processes. These may include impaired clearance

of dysfunctional mitochondria by autophagy/mitophagy and

inefficient transport of mitochondria to dendrites and axons

(Li et al., 2004; Sheng, 2014).

The pathologic accumulation of mtDNAmultiple deletions and

their clonal expansion in single dopaminergic neurons has been

elegantly demonstrated by laser capture analysis of dopami-

nergic neurons in the substantia nigra in the elderly and, as

an enhanced process, in patients with sporadic Parkinson’s

disease (PD) (Bender et al., 2006; Kraytsberg et al., 2006). The

frequent feature of Parkinsonism complicating the mtDNA insta-

bility syndromes further highlights the pathogenic link between

mtDNA deletions and Parkinson disease. Thus, the direct role

of mtDNA in aging-related neurodegenerative disorders is an

important topic that is increasingly investigated (Schon and

Przedborski, 2011).

Pathogenic Mechanisms

Clonal Expansion of mtDNA. To understand the pathogenesis

of mtDNA diseases, it is critical to consider how a pathogenic

mtDNA variant can over time accumulate to high enough levels

to cause disease. One aspect of this issue involves random ge-

netic drift, which can result in a daughter cell inheriting a higher

load of the pathogenic variant. In some cases, however, a single

mtDNA variant can be clonally expanded to become homoplas-

mic. Clonal expansion of mtDNAmutations, along with declining

mitochondrial function, has long been associated with aging

(Chomyn and Attardi, 2003). In aged skeletal muscle, analysis

of transverse sections shows an increased incidence of muscle

fibers showing loss of OXPHOS, as indicated by lack of cyto-

chrome c oxidase activity and increased succinate dehydroge-

nase activity (analogous to Figures 2A and 2B). Serial histological

sectioning and reconstruction indicate that the defective muscle

fibers have segmental loss of OXPHOS activity (Wanagat et al.,

2001). In other words, when viewed longitudinally, a discrete

segment of the muscle fiber has defective OXPHOS activity.
Analysis of mtDNA from these affected segments reveals

segmental homoplasmy of a defective mtDNA genome, typically

containing an internal deletion. The accumulation of an mtDNA

genome with a deletion results in the loss of OXPHOS activity.

SDH activity is paradoxically increased because of compensa-

tory mitochondrial biogenesis. Because SDH activity is entirely

encoded by the nuclear genome, its function is not disrupted

by mutation of mtDNA. As described above, clonal expansion

is alsowell documented in dopaminergic neurons in the substan-

tia nigra from aged individuals (Bender et al., 2006; Kraytsberg

et al., 2006).

It is unclear how an mtDNA deletion that arises de novo in so-

matic cells is subsequently expanded at the expense of wild-

type genomes. One model postulates that clonal expansion is

driven by the faster replication time for a smaller mtDNA

genome (Wallace, 1989). However, in contrast to a prediction

of this model, the sizes of clonally expanded segments in the

muscle fibers do not correlate with the extent of the mtDNA

deletion (Campbell et al., 2014). Other possible explanations

are reduced turnover of mitochondria containing deleted ge-

nomes (de Grey, 1997) and random genetic drift coupled with

relaxed replication of mtDNA (Elson et al., 2001). In muscle

fibers, clonal expanded mtDNA genomes are found in seg-

ments. These segments presumably represent snapshots of

the expansion process. Muscle fibers are long, multinucleated

cells, and the segmental nature of clonal expansion suggests

that mitochondrial mixing is relatively restricted. It seems likely

that the dynamic processes of fusion and fission would affect

the dimensions of such segments.

Role of Dynamics in Tolerance of mtDNA Mutations. In mouse

models heteroplasmic for mtDNA containing an internal deletion,

respiratory chain defects do not manifest in cells until the level of

the pathogenic mtDNA approaches 85% (Nakada et al., 2001).

Therefore, low levels of the wild-type mtDNA genome are suffi-

cient to complement the pathogenic molecules. This threshold

effect has led to the proposal that content exchange between

mitochondria can complement recessive mtDNA mutations

(Nakada et al., 2009). In a mouse model containing increased

mtDNA mutations, mitochondrial fusion was found to be a

protective factor. Removal of Mfn1, a GTPase required for mito-

chondrial fusion, greatly exacerbated the phenotype of the mice

and promoted respiratory chain deficiency (Chen et al., 2010).

In addition, mitochondrial fusion is required for maintenance of

mtDNA levels (Chen et al., 2007, 2010).
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Role of Mitophagy. Mitophagy is the degradation of mitochon-

dria through autophagy (Youle and Narendra, 2011). Although

mitochondria can be degraded as part of a nonspecific auto-

phagy response, mitophagy can also be selective for dysfunc-

tional mitochondria. As a result, mitophagy, by culling out aged

and damaged mitochondria, may be an important quality control

mechanism for maintaining the function of the mitochondrial

population. Mitochondria with degenerative morphologies have

been reported to accumulate in cells when core components

of the autophagy machinery are removed (Takamura et al.,

2011). However, it is unclear whether this is a direct result of

the failure to turnover mitochondria, and therefore, the physio-

logical functions of mitophagy remain to be clarified. In some

pathological states, dysfunctional mitochondria are persistent

and are not removed by mitophagy.

How does the autophagy machinery recognize mitochondria?

Perhaps the clearest example exists in yeast, where a mitochon-

drial outer membrane protein links mitochondria to the auto-

phagy machinery. Yeast cells grown with a nonfermentable

carbon source show enhanced mitophagy in post-log phase.

In a screen of yeast mutants, the mitochondrial outer membrane

protein ATG32 was identified as a receptor for the mitophagy

machinery (Kanki et al., 2009; Okamoto et al., 2009). ATG32

expression is induced during post-log phase growth and physi-

cally interacts with ATG11, an adaptor for the autophagy

machinery. ATG32-deficient yeast cells have a selective defect

in mitophagy, whereas the degradation of other cellular compo-

nents by autophagy is unaffected.

Mitochondrial fission has been linked to mitophagy, because

inhibition of mitochondrial fission reduces the efficiency of

mitophagy (Frank et al., 2012; Tanaka et al., 2010). In yeast, the

autophagy adaptor ATG11 physically associates with Dnm1

(Maoet al., 2013), a largeGTPase that is thecentral player inmito-

chondrial fission. These observations suggest that the onset of

mitophagy is coordinated with mitochondrial fission. The role of

fission may be to help segregate mitochondria into smaller

physical units that can be readily engulfed by autophagosomes.

Studies in the last several years have linked PD to mitophagy.

Pink1 and Parkin are genes mutated in some inherited forms

of PD. As first revealed in fly studies, both genes are critical for

maintenance of mitochondrial function (Clark et al., 2006; Park

et al., 2006; Yang et al., 2006). Studies in mammalian cell culture

suggest that they operate in a linear pathway to remove dysfunc-

tional mitochondria. When Parkin is overexpressed, it localizes

to the surface of depolarized mitochondria and promotes their

degradation by mitophagy (Narendra et al., 2008). Pink1 is a

serine/threonine kinase that is required to localize Parkin onto

the surface of dysfunctional mitochondria (Narendra et al.,

2010b). Pink1 is normally kept at low levels on mitochondria

due to degradation by the PARL protease, but it accumulates

on the mitochondrial surface upon depolarization of the inner

membrane (Jin et al., 2010). This accumulation allows recruit-

ment of Parkin onto dysfunctional mitochondria. Once Parkin is

recruited, it causes widespread ubiquitination of mitochondrial

outer membrane proteins (Chan et al., 2011). Some autophagy

adaptors, such as NBR1 and p62, bind to ubiquitin, but there

are conflicting reports about their involvement in Parkin-medi-

ated mitophagy (Geisler et al., 2010; Narendra et al., 2010a;
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Okatsu et al., 2010). Ubiquitination causes mitochondrial outer

membrane protein degradation, an event that is required for

the subsequent degradation of mitochondria by autophago-

somes (Chan et al., 2011; Tanaka et al., 2010).

The involvement of Pink1 and Parkin in mitophagy suggests

the intriguing hypothesis that some forms of PD may result

from a loss of mitochondrial quality control, leading to the accu-

mulation of dysfunctional mitochondria. PD has long been linked

to mitochondrial dysfunction (Abou-Sleiman et al., 2006). Cell

culture experiments suggest that Parkin can influence the segre-

gation of mtDNA mutations in a heteroplasmic cell, biasing the

population toward functional mtDNA (Suen et al., 2010). How-

ever, our knowledge of the Pink1/Parkin system in mitophagy

is still preliminary, and it will be important to define the cell types

in which Pink1/Parkin play an endogenous role in mitochondrial

turnover. In some neuronal cultures, Parkin recruitment to depo-

larized mitochondria is not robust (Van Laar et al., 2011) or oc-

curs with slower kinetics compared to commonly used cell lines,

such as HeLa cells (Cai et al., 2012). In an experimental mouse

model of mitochondrial dysfunction leading to neurodegenera-

tion, Parkin is not recruited to damaged mitochondria and

does not appear to play a significant protective role (Sterky

et al., 2011). The latter result may also reflect differences

between the role of Parkin in mice versus humans, because

mice lacking Parkin or Pink1 do not show neurodegenerative

changes. Therefore, it will be important to clarify the physiolog-

ical functions of Parkin and mitophagy in mitochondrial disease.

Adaptive Selection of mtDNA Variants: Haplogroups as Multifac-

eted Modulators of Healthiness and Disease. Due to its very

highmutational rate, the small mtDNAmolecule is extraordinarily

variable among human populations. Many variants have been

extensively studied in the last two decades to understand how

human populations evolved, migrated, and colonized the conti-

nents (Torroni et al., 2006). A large fraction of this variation

may have been selected by environmental adaptation. In partic-

ular, two driving forces for adaptation, climate and diet, have

been postulated to be major contributors in shaping regional

mtDNA genetic variation in human populations (Wallace, 2013).

This mtDNA genetic variation, as exemplified by classifying

mtDNA genomes into different haplogroups, generates intra-

species variability in terms of adaptation to environment and

protection or predisposition to pathological conditions, thus

impinging on the aging process (Wallace, 2013).

The exponential increase in studies showing specific mtDNA

haplogroups associated with human pathologies provides

mounting evidence that ‘‘normal’’ variation of the mtDNA back-

ground sequence may predispose to diseases. Furthermore,

mtDNA variation may act as modifying factor of clinical severity

or penetrance in the case of mtDNA-related genetic disorders.

The most replicated case is the association of specific branches

of the Caucasian haplogroup J with penetrance in LHON (Carelli

et al., 2006; Hudson et al., 2007). Similarly, mtDNA haplogroup

K has been consistently associated across different studies

with protection from developing Parkinson disease (Ghezzi

et al., 2005; Hudson et al., 2013; van der Walt et al., 2003).

Therapeutic Strategies for mtDNA Disease

Historically, mitochondrial diseases related to defective mtDNA

have been treated empirically with variable combinations of
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cofactors and vitamins, a ‘‘mito-cocktail’’ frequently including

antioxidants such as quinones (CoQ and idebenone), lipoic

acid, vitamins E and C, and molecules boosting bioenergetics

such as creatine and carnitine (Pfeffer et al., 2012). The efficacy

of these treatments has been unclear due to the intrinsic diffi-

culties in running properly designed controlled trials with rare

diseases, with mitochondrial disorders posing additional prob-

lems due to their clinical heterogeneity and loosely defined

natural history (Pfeffer et al., 2013).

At the genetic level, the lack of tools to manipulate the multi-

copy mtDNA genome, delimited by a double membrane, has

been a major obstacle. However, major breakthroughs have

been achieved recently, opening a new era for the therapy of

mitochondrial disorders. A general strategy, supported by trans-

lational evidence from both patients (Giordano et al., 2014) and

animal models (Wredenberg et al., 2002), is the compensatory

activation of mitochondrial biogenesis. Multiple approaches

have converged on activating the transcriptional coactivator

PGC1a, the master regulator of mitochondrial biogenesis (Cer-

utti et al., 2014; Khan et al., 2014). These results provide hope

for rapid translation into clinical trials in human patients.

Another major achievement is based on the simple idea of

shifting heteroplasmy toward wild-type mtDNA to restore under-

threshold heteroplasmy in the key tissues. Using either mito-

chondria-targeted TALEN (mitoTALEN) nucleases (Bacman

et al., 2013) or mitochondria-targeted obligate heterodimeric

zinc finger nucleases (mtZFNs) (Gammage et al., 2014) for site-

specific elimination of mutant mtDNA, it has been possible to

provide proof of principle that these strategies are feasible.

Another proposed approach to counteract mtDNA mutations is

the allotopic nuclear re-expression of the wild-type mtDNA sub-

unit gene, engineered for mitochondrial import from the cytosol

(Guy et al., 2002; Manfredi et al., 2002). This strategy will be

soon tested in human clinical trials for LHON (Guy et al., 2002).

On a similar line, it has been shown that the C-terminal domain

of human mitochondrial leucyl-tRNA synthetase can be used

to correct mitochondrial dysfunctions caused bymt-tRNAmuta-

tions (Perli et al., 2014). The nuclear expression of such small

peptides, engineered for mitochondrial import, may become a

universal therapeutic approach for encephalomyopathies such

as MELAS and MERRF.

Finally, to minimize germline transmission of mutant mtDNA,

there have been advances in nuclear DNA transfer techniques

designed to reduce mutant mtDNA from patient cells. The spin-

dle-chromosomal complex (Tachibana et al., 2009) or the polar

body (Wang et al., 2014) of an affected oocyte, or the pronuclei

(Craven et al., 2010) of an affected zygote, can be used as the

source of nuclear genome to be transferred into an enucleated

recipient with wild-type mtDNA. The resulting embryo will

generate a so-called three-parent offspring, carrying the correct

complement of nuclear genes from the natural parents and

normal mtDNA from a third-parent. These transfer techniques

differ in their efficiency at reducing or eliminating mutant mtDNA

from the offspring. In vitro and animal experiments in primates

and mice support the feasibility of the nuclear DNA transfer

approach, and there is a large ongoing discussion about the

ethical implications of its application to humans with mtDNA

mutations (Amato et al., 2014).
Conclusion
Belying its small size, the mitochondrial genome plays a central

role in cellular metabolism, and defects in mtDNA result in an

extraordinary range of human diseases. Because of their high

metabolic requirements, neurons in both the central and periph-

eral nervous systems are among the most commonly affected

cell types in mitochondrial disease. A full understanding of these

diseases will require more insight into the basic biology of mito-

chondria, including the mechanisms that maintain mitochondrial

dynamics, cull defective organelles, and protect mtDNA integrity

during maternal inheritance and cell division. A deeper under-

standing of the basic biology of mitochondria holds promise

for developing effective therapies, which for most mitochondrial

diseases currently remain at the level of palliative and symptom-

atic approaches.
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D., Tack, P., Dehaene, I., Van Zandijcke, M., Moonen, M., et al. (2003).
Recessive POLG mutations presenting with sensory and ataxic neuropathy
in compound heterozygote patients with progressive external ophthalmople-
gia. Neuromuscul. Disord. 13, 133–142.

Van Laar, V.S., Arnold, B., Cassady, S.J., Chu, C.T., Burton, E.A., and Berman,
S.B. (2011). Bioenergetics of neurons inhibit the translocation response of
Parkin following rapid mitochondrial depolarization. Hum. Mol. Genet. 20,
927–940.

Verstreken, P., Ly, C.V., Venken, K.J., Koh, T.W., Zhou, Y., and Bellen, H.J.
(2005). Synaptic mitochondria are critical for mobilization of reserve pool
vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378.

Wai, T., Teoli, D., and Shoubridge, E.A. (2008). The mitochondrial DNA genetic
bottleneck results from replication of a subpopulation of genomes. Nat. Genet.
40, 1484–1488.

Wallace, D.C. (1989). Mitochondrial DNA mutations and neuromuscular dis-
ease. Trends Genet. 5, 9–13.

Wallace, D.C. (2013). Bioenergetics in human evolution and disease:
implications for the origins of biological complexity and the missing genetic
1142 Neuron 84, December 17, 2014 ª2014 Elsevier Inc.
variation of common diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368,
20120267.

Wallace, D.C., Singh, G., Lott, M.T., Hodge, J.A., Schurr, T.G., Lezza, A.M.,
Elsas, L.J., 2nd, and Nikoskelainen, E.K. (1988). Mitochondrial DNA mutation
associated with Leber’s hereditary optic neuropathy. Science 242, 1427–
1430.

Wanagat, J., Cao, Z., Pathare, P., and Aiken, J.M. (2001). Mitochondrial
DNA deletion mutations colocalize with segmental electron transport system
abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in
sarcopenia. FASEB J. 15, 322–332.

Wang, J., Wilhelmsson, H., Graff, C., Li, H., Oldfors, A., Rustin, P., Brüning,
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